Journal Articles (All Issues)

THE INFLUENCE OF THE INTERNAL STRUCTURE OF BIMETALLIC NANOPARTICLES ON THE OPTICAL PROPERTIES OF AUAG/GLASS MATERIAL

Authors

Ali Nasir Abdul Hussein

Keyword Optical extinction spectra, Nanoparticles, Metal concentrations, Architectural configurations, "plasmon resonance"

Abstract

Multiple-sphere T-matrix approach is used to examine the optical extinction spectra of nanoparticles. These nanoparticles have different alloy structures, shell-like nature, inverse ""core-shell"" architectures, metal concentrations. A unique approach for determining the architecture of nanoparticles (whether they have a "core-shell" structure or are alloyed) using just information about A place for “"plasmon resonance"” and creating the parts we need is suggested by examining simulations and existing literature. The work finds that the internal structure of monodisperse non-interacting "bimetallic nanoparticles" with a known may be effectively determined across a large range of possible configurations by using the optical spectrum fitting technique. However, the approach encounters difficulties and constraints in precisely characterizing the internal structure of nanoparticles larger than 60 nm in radius and containing fewer than about 25% silver atoms. Overall, the research highlights the potential of using optical extinction spectra analysis and fitting techniques to unravel the structural properties of nanoparticles, but acknowledges certain limitations for specific nanoparticle sizes and compositions

References

    [1] D.J. de Aberasturi, A.B. Serrano-Montes, L.M. Liz-Marzan. Adv. Opt. Mater. 3, 602 (2015). DOI:10.1002/adom.201500053 [2] И.А. Гладких, Т.А. Вартанян. Оптика и спектроскопия 121, 916 (2016); [I.A. Gladskikh, T.A. Vartanyan. Opt. Spectroscopy 121, 851 (2016).] DOI: 10.1134/S0030400X16120109 [3] V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati. J. Phys.: Condens. Matter. 29, 203002 (2017). [4] U. Kreibig, M. Vollmer. Opt. Properties of Metal Clusters. "SPRl"inger (1995). 553 c. [5] T. Hartman, C.S. Wondergem, N. Kumar, A. van den Berg, B.M. Weckhuysen. J. Phys. Chem. Lett. 7, 1570 (2016). DOI: 10.1021/acs.jpclett.6b00147 [6] L.-B. Luo, K. Zheng, C.-W. Ge, Y.-F. Zou, R. Lu, Y. Wang, D.- D. Wang, T.-F. Zhang, F.-X. Liang. Plasmonics 11, 619 (2016). DOI: 10.1007/s11468-015-0091-3 [7] R. Ghosh Chaudhuri, S. Paria. Chem. Rev. 112, 2373 (2012). DOI: 10.1021/cr100449n [8] V. Guterman, S. Belenov, A. Pakharev, M. Min, N. Tabachkova, E. Mikheykina, L. Vysochina, T. Lastovina. Int. J. Hydrogen Energy. 41, 1609 (2016). DOI: http://dx.doi.org/10.1016/j.ijhydene.2015.11.002 [9] T. Dang-Bao, D. Pla, I. Favier, M. Gomez. Catalysis 7, (2017). DOI: 10.3390/catal7070207 [10] L. Lu, G. Burkey, I. Halaciuga, D.V. Goia. J. Colloid Interface Sci. 392, 90 (2013). DOI: https://doi.org/10.1016/ j.jcis.2012.09.057 [11] J. Haug, H. Kruth, M. Dubiel, H. Hofmeister, S. Haas, D. Tatchev, A. Hoell. Nanotechnology 20, 505705 (2009). [12] Г.Н. Макаров. Успехи физических наук 183, 673 (2013); [G.N. Makarov. Phys. Usp. 56, 643 (2013).] DOI: 10.3367/UFNr.0183.201307a.0673 [13] J. Deng, J. Du, Y. Wang, Y. Tu, J. Di. Electrochem. Commun. 13, 1517 (2011). DOI: 10.1016/j.elecom.2011.10.010 [14] P. Dong, Y. Lin, J. Deng, J. Di. ACS Appl. Mater. Interfaces 5, 2392 (2013). DOI: 10.1021/am4004254 [15] S.M. Morton, D.W. Silverstein, L. Jensen. Chem. Rev. 111, 3962 (2011). DOI: 10.1021/cr100265f [16] S. Bernadotte, F. Evers, C.R. Jacob. J. Phys. Chem. C 117, 1863 (2013). DOI: 10.1021/jp3113073 [17] P. Koval, F. Marchesin, D. Foerster, D. Sanchez-Portal. J. Phys.: Condens. Matter. 28, 214001 (2016). [18] Н.А. Олехно, Я.М. Бельтюков, Д.А. Паршин. ФТТ 57, 24052414 (2015). [N.A. Olekhno, Y.M. Beltukov, D.A. Parshin. Phys. Solid State 57, 24792488 (2015).] DOI: 10.1134/S1063783415120252 [19] A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria. Materials 6, 4879 (2013). DOI: 10.3390/ma6114879 [20] P. Jahanshahi, M. Ghomeishi, F.R.M. Adikan. Sci. World J. 2014, 6 (2014). DOI: 10.1155/2014/503749 [21] A. Derkachova, K. Kolwas, I. Demchenko. Plasmonics (Norwell, Mass.) 11, 941 (2016). DOI: 10.1007/s11468-015-0128-7 [22] C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann. New J. Phys. 4, 93 (2002). [23] X. Fan, W. Zheng, D.J. Singh. Light Sci. Appl. 3, e179 (2014). [24] A. Crut, P. Maioli, F. Vallee, N.D. Fatti. J. Phys.: Condens. ´ Matter. 29, 123002 (2017). [25] S. Berciaud, L. Cognet, P. Tamarat, B. Lounis. Nano Lett. 5, 515 (2005). DOI: 10.1021/nl050062t [26] A. Taflove, S. Hagness. Computational Electrodynamics: The Finite-difference Timedomain Method. Artech House (2005). 1038 c. [27] J. Jin. The Finite Element Method in Electromagnetics. Wiley (2015) 876 c. [28] B.T. Draine, P.J. Flatau. J. Opt. Soc. Am. A 11, 1491 (1994). DOI: 10.1364/JOSAA.11.001491 [29] P.J. Flatau, B.T. Draine. Opt. Express 20, 1247 (2012). DOI: 10.1364/OE.20.001247 [30] O. Zhuromskyy. Crystals 7, 1 (2017). DOI: 10.3390/cryst7010001 [31] W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig. Anal. Chem. 79, 4215 (2007). DOI: 10.1021/ac0702084 [32] P.N. Njoki, I.-I.S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C.-J. Zhong. J. Phys. Chem. C 111, 14664 (2007). DOI: 10.1021/jp074902z [33] M. Heinz, V.V. Srabionyan, A.L. Bugaev, V.V. Pryadchenko, E.V. Ishenko, L.A. Avakyan, Y.V. Zubavichus, J. Ihlemann, J. Meinertz, E. Pippel, M. Dubiel, L.A. Bugaev. J. Alloys Compd. 681, 307 (2016). DOI: http://dx.doi.org/10.1016/j.jallcom.2016.04.214 [34] Y.-L. Xu. Appl. Opt. 34, 4573 (1995). DOI: 10.1364/AO.34.004573 [35] G. Gouesbet, G. Grehan. J. Opt. A 1, 706 (1999). [36] P.C. Waterman. Proc. IEEE. 53, 805 (1965). DOI: 10.1109/PROC.1965.4058 [37] M.I. Mishchenko. J. Opt. Soc. Am. A8, 871 (1991). DOI: 10.1364/JOSAA.8.000871 [38] D.W. Mackowski, M.I. Mishchenko. J. Opt. Soc. Am. A13, 2266 (1996). DOI: 10.1364/JOSAA.13.002266 [39] N.G. Khlebtsov. J. Quant. Spectrosc. Rad. Transfer. 123, 184 (2013). DOI: http://dx.doi.org/10.1016/j.jqsrt.2012.12.027 [40] M.I. Mishchenko, N.T. Zakharova, N.G. Khlebtsov, G. Videen, T. Wriedt. J. Quant. Spectrosc. Rad. Transfer. 178, 276 (2016). DOI: 10.1016/j.jqsrt.2015.11.005 [41] M.I. Mishchenko, N.T. Zakharova, N.G. Khlebtsov, G. Videen, T. Wriedt. J. Quant. Spectrosc. Rad. Transfer. 202, 240 (2017). DOI: http://dx.doi.org/10.1016/j.jqsrt.2017.08.007 [42] L. Avakyan, M. Heinz, A. Skidanenko, K.A. Yablunovskiy, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, L. Bugaev. J. Phys.: Condens. Matter. 30, 045901 (2018). DOI: 10.1088/1361-648X/aa9fcc [43] C. Zhang, B.-Q. Chen, Z.-Y. Li, Y. Xia, Y.-G. Chen. J. Phys. Chem. C 119, 1683616845 (2015). DOI: 10.1021/acs.jpcc.5b04232 [44] D. Mackowski, M. Mishchenko. J. Quant. Spectrosc. Rad. Transfer. 112, 2182 (2011). DOI: 10.1016/j.jqsrt.2011.02.019 [45] L.A. Avakyan. Python wrapper for multiple sphere T -matrix (MSTM) code to calculate surface "plasmon resonance" ("SPRL") spectrum, (2017). https://github.com/lavakyan/mstmspectrum [46] D. Rioux, S. Vallieres, S. Besner, P. Munoz, E. Mazur, M. Meunier. Adv. Opt. Mater. 2, 176 (2014). DOI: 10.1002/adom.201300457 [47] A.R. Denton, N.W. Ashcroft. Phys. Rev. A 43, 3161 (1991). DOI: 10.1103/physreva.43.3161 [48] S. Ristig, O. Prymak, K. Loza, M. Gocyla, W. Meyer-Zaika, M. Heggen, D. Raabe, M. Epple. J. Mater. Chem. B 3, 4654 (2015). DOI: 10.1039/c5tb00644a

Downloads

View/Download PDF

PDF



Published

2024-02-21

Issue

Vol. 43 No. 01 (2024)