Journal Articles (All Issues)

REGULARITY OF FORMATION OF MONO-I BIMETALLIC NANOPARTICLES IN THE COALESCENCE PROCESS

Authors

Ali Nasir Abdul Hussein

Keyword mono- and bimetallic nanoparticles, molecular dynamics, coalescence, Monte Carlo method, molecular dynamics method, dihedral angle.

Abstract

We performed simulations to study the fusion process of metal nanoparticles made of nickel, aluminum, copper, silver and gold. We used two different methods: the Monte Carlo method and the molecular dynamics method. The nanoparticles were subjected to gradual thermal exposure during the simulations, and mono- and bi-metallic systems were taken into account. The nanoparticles were designed as spheres and two perpendicular blocks. Our study revealed significant differences in the evolution of the fusion process between mono- and bi-metallic nanoparticles. We observed that several properties varied significantly, including the coalescence temperature, the structure and shape of the neck formed between the nanoparticles, and the dihedral angle between them. But it is possible to accurately predict the behavior of a bimetallic system during the fusion process based on the fusion behavior observed in a monometallic system containing the same constituent metals. This indicates the complexity of the fusion process in bimetallic systems, and highlights the need for further research in this area. Overall, the study provides valuable insights into the coalescence behavior of metal nanoparticles and emphasizes the importance of considering the specific properties of bimetallic systems.

References

    1. BritishStandards Institution (BSI), BS PAS 71:2011: Nanoparticles—Vocabulary, https://shop.bsigroup.com/ProductDetail/?pid=000000000030214797 (accessed: January 2019). 2. J. Zhao, E. Baibuz, J. Vernieres, P. Grammatikopoulos, V. Jansson, M. Nagel, S. Steinhauer, M. Sowwan, A. Kuronen, K. Nordlund, F. Djurabekova, ACS Nano 2016, 10, 4684. 3. P. Grammatikopoulos, S. Steinhauer, J. Vernieres, V. Singh, M. Sowwan, Adv. Phys.: X 2016, 1, 81 4. A. Halder, J. Kioseoglou, B. Yang, K. L. Kolipaka, S. Seifert, J. Ilavsky, M. Pellin, M. Sowwan, P.Grammatikopoulos, S.Vajda, Nanoscale 2019, https://doi.org/10.1039/C8NR06664G. 5. S. Kumar, T. Pavloudis, V. Singh, H. Nguyen, S. Steinhauer, C. Pursell, B. Clemens, J. Kioseoglou, P. Grammatikopoulos, M. Sowwan, Adv. Energy Mater. 2018, 8, 1701326. 6. J. Vernieres, S. Steinhauer, J. Zhao, A. Chapelle, P. Menini, N. Dufour, R. E. Diaz, K. Nordlund, F. Djurabekova, P. Grammatikopoulos, M. Sowwan, Adv. Funct. Mater. 2017, 27, 1605328. 7. M. Bohra, P. Grammatikopoulos, V. Singh, J. Zhao, E. Toulkeridou, S. Steinhauer, J. Kioseoglou, J.-F. Bobo, K. Nordlund, F. Djurabekova, M. Sowwan, Phys. Rev. Mater. 2017, 1, 066001. 8. L. M. Farigliano, S. A. Paz, E. P. M. Leiva, M. A. Viallreal, J. Chem. Theory Comput. 2017, 13, 3874. 9. M. Haro, V. Singh, S. Steinhauer, E. Toulkeridou, P. Grammatikopoulos, M. Sowwan, Adv. Sci. 2017, 4, 1700180. 10. BB. Yang, C. Liu, A. Halder, E. C. Tyo, A. B. F. Martinson, S. Seifert, P. Zapol, L. A. Curtiss, S. Vajda, J. Phys. Chem. C 2017, 121, 10496. 11. Zhukun Zhou, Xing Guo, Helin Jia, Guangxian Li, Xue Fan, Songlin Ding, Ultra-Fast Heating Process of Cu-Pd Bimetallic Nanoparticles Unraveled by Molecular Dynamics Simulation, Coatings, 10.3390/coatings13061078, 13, 6, (1078), (2023). 12. Andrey Pento, Ilya Kuzmin, Viacheslav Kozlovskiy, Lei Li, Polina Laptinskaya, Yaroslav Simanovsky, Boris Sartakov, Sergey Nikiforov, Laser-Induced Ion Formation and Electron Emission from a Nanostructured Gold Surface at Laser Fluence below the Threshold for Plasma Formation, Nanomaterials, 10.3390/nano13030600, 13, 3, (600), (2023). 13. Daniela Moreno-Chaparro, Nicolas Moreno, Florencio Balboa Usabiaga, Marco Ellero, Computational modeling of passive transport of functionalized nanoparticles, The Journal of Chemical Physics, 10.1063/5.0136833, 158, 10, (2023). 14. Kirill S. Erokhin, Evgeniy O. Pentsak, Vyacheslav R. Sorokin, Yury V. Agaev, Roman G. Zaytsev, Vera I. Isaeva, Valentine P. Ananikov, Dynamic behavior of metal nanoparticles in MOF materials: analysis with electron microscopy and deep learning, Physical Chemistry Chemical Physics, 10.1039/D3CP02595K, 25, 32, (21640-21648), (2023). 15. Murilo Moreira, Levi C. Felix, Emmanuel Cottancin, Michel Pellarin, Daniel Ugarte, Matthias Hillenkamp, Douglas S. Galvao, Varlei Rodrigues, Influence of Cluster Sources on the Growth Mechanisms and Chemical Composition of Bimetallic Nanoparticles, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.2c08044, 127, 4, (1944-1954), (2023). 16. Jinhan Liu, Lin Zhang, Molecular Dynamics Investigation of Hetero Coalescence between Two Ih Ag55 and Cu55 Clusters at Atomic Scale, Advanced Theory and Simulations, 10.1002/adts.202200857, 6, 4, (2023). 17. Dhrubo Jyoti, Scott W. Gordon-Wylie, Daniel B. Reeves, Keith D. Paulsen, John B. Weaver, Distinguishing Nanoparticle Aggregation from Viscosity Changes in MPS/MSB Detection of Biomarkers, Sensors, 10.3390/s22176690, 22, 17, (6690), (2022). 18. V. M. Samsonov, I. V. Talyzin, V. V. Puytov, S. A. Vasilyev, A. A. Romanov, M. I. Alymov, When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study, The Journal of Chemical Physics, 10.1063/5.0075748, 156, 21, (2022). 19. Lasse K. Sørensen, Daniil E. Khrennikov, Valeriy S. Gerasimov, Alexander E. Ershov, Maxim A. Vysotin, Susanna Monti, Vadim I. Zakomirnyi, Sergey P. Polyutov, Hans Ågren, Sergey V. Karpov, Thermal degradation of optical resonances in plasmonic nanoparticles, Nanoscale, 10.1039/D1NR06444D, 14, 2, (433-447), (2022). 20. Giuseppe Sanzone, Susan Field, David Lee, Jingzhou Liu, Pengfei Ju, Minshi Wang, Parnia Navabpour, Hailin Sun, Jinlong Yin, Peter Lievens, Antimicrobial and Aging Properties of Ag-, Ag/Cu-, and Ag Cluster-Doped Amorphous Carbon Coatings Produced by Magnetron Sputtering for Space Applications, ACS Applied Materials & Interfaces, 10.1021/acsami.2c00263, 14, 8, (10154-10166), (2022). 21. Joodeok Kim, Dohun Kang, Sungsu Kang, Byung Hyo Kim, Jungwon Park, Coalescence dynamics of platinum group metal nanoparticles revealed by liquid-phase transmission electron microscopy, iScience, 10.1016/j.isci.2022.104699, 25, 8, (104699), (2022). 22. K.V. Suliz, A.Yu. Kolosov, V.S. Myasnichenko, N.I. Nepsha, N.Yu. Sdobnyakov, A.V. Pervikov, Control of cluster coalescence during formation of bimetallic nanoparticles and nanoalloys obtained via electric explosion of two wires, Advanced Powder Technology, 10.1016/j.apt.2022.103518, 33, 3, (103518), (2022). 23. Wael H.M. Abdelraheem, Murtaza Sayed, Ahmed M. Abu-Dief, Engineered magnetic nanoparticles for environmental remediation, Fundamentals and Industrial Applications of Magnetic Nanoparticles, 10.1016/B978-0-12-822819-7.00001-6, (499-524), (2022). 24. V. V. Puytov, A. A. Romanov, I. V. Talyzin, V. M. Samsonov, Features and mechanisms of coalescence of nanodroplets and sintering of metal nanoparticles: molecular dynamics simulation, Russian Chemical Bulletin, 10.1007/s11172-022-3466-6, 71, 4, (686-693), (2022).

Downloads

View/Download PDF

PDF



Published

2024-02-21

Issue

Vol. 43 No. 01 (2024)